Thermal-Desorption Aerosol GC/MS-FID (TAG) ICARTT 2004

Brent J. Williams, Allen H. Goldstein University of California, Berkeley

Nathan M. Kreisberg, Susanne V. Hering Aerosol Dynamics Inc.

Supporting Scientists:

UC-Berkeley: Dylan Millet, Megan McKay

Major Supporting Data (ICARTT 2004):

Aerodyne Research, Inc.: Doug Worsnop et al.

University of Colorado, Boulder: Jose-Luis Jimenez et al.

University of Manchester, UK: James Allan et al.

Funding:

Department of Energy: Global Change Education Program

Department of Energy: Small Business Innovative Research grant

National Oceanic and Atmospheric Administration

NOAA: March 11, 2005; Boulder, CO

ISSUE

- Organic portion of Atmospheric PM_{2.5} Aerosols (20-60%) is helpful in determining and understanding:
 - Particle sources
 - Particle formation processes
- Past field measurements:
 - In-Situ techniques (no extensive individual organic compound separation)
 - Filter collection (12 to 24-hour time resolution)
- New measurement technique: Thermal-desorption Aerosol GC/MS-FID (TAG)
 - Faster time resolution
 - Automated: No sample handling
 - In-Situ data acquisition

OBJECTIVES

1) Test TAG's ability to achieve:

- In-Situ Automated, semi-continuous measurements
- 1-hour time resolution in a "remote" location
- Separation / Identification / Quantification of individual organic marker compounds from particle phase

2) Preliminary Data Analysis (Today's Focus):

 Initial focus on resolved marker compounds to determine organic aerosol source regions

APPROACH

TAG: Thermal Desorption Aerosol GC/MS-FID

TAG's First Trip to the Field

NOAA http://map.ngdc.noaa.gov/website/al/emissions/Run.htm

- Chebogue Point, Nova Scotia Canada (ICARTT 2004)
- Hourly data (750 chromatograms x 2 detectors = 1500)
- First look TAG data July 26 August 15 (~3 weeks)
- Manual calibration with directly applied standards
- Automated filtered and zero air blanks

Abundance

T im e -->

Chebogue Point, Nova Scotia. August 7, 2004

Sample time: 0.5 hour

Sample Volume: 0.25 m³

Thermal Desorption: 50-300°C

GC oven temp. range shown here: ~ 45°C to 300°C

Total Organic Aerosol = (Resolved Compounds + Unresolved Compounds + Non-Eluting Compounds)

ASIDE:

- -Compounds collected in Nova Scotia are extremely oxygenated
- -Difficult to identify using only **NIST** database, may not be in database

The dotted red line represents equivalent abundance between graphs A and B.

ASIDE:

- -Compounds collected in Nova Scotia are extremely oxygenated
- -Difficult to identify using only **NIST** database, may not be in database

The dotted red line represents equivalent abundance between graphs A and B.

Some Identified Compounds from Nova Scotia

a1.69	5-Hexenoic acid, 5-methyl-	C7H12 <u>O2</u>
d1.43	5,6-Dihydropyran-2-one, 5-acetoxy-6-(1,2-epoxypropyl)-	C10H12 <u>O5</u>
h1.104	Phthalic acid	C8H6 <u>O4</u>
j1.71	2,3-Pinanediol	C10H18 <u>O2</u>
m1.84	Pelletierine	C8H15N <u>O</u>
n1.112	1,6-Dioxaspiro[4,4]nonane-2,7-dione	C7H8 <u>O4</u>
o1.126	2,2-Dimethyl-3-heptene trans	C9H18
p1.43	4-Pentenoic acid, 2-acetyl-2,3-dimethyl-,ethyl ester	C11H18 <u>O3</u>
r1.139	4s,6s-Dimethyl-7R-acetoxy-3-nonanone (acetyl serricornin)	C13H24 <u>O3</u>
t1.98	Cyclohexanone, 2-ethyl-	C8H14 <u>O</u>
u1.98	2(3H)-Furanone, 5-methyl-	C5H6 <u>O2</u>
aa1.99	Spiro[1,3-dioxolane-2,2'-[6,7]diazabicyclo[3.2.2]non-6-ene	C9H14N2 <u>O2</u>
ee1.86	2(3H)-Furanone, 3-acetyldihydro-	C6H8 <u>O3</u>
ff1.219	3,5-di-tert-Butyl-4-hydroxybenzaldehyde	C15H22 <u>O2</u>
gg1.178	Dibenz[c,dihydrooxepin	C14H12 <u>O</u>

Reproducible Standards from Nova Scotia (manual injections)

Phthalic 3,4,5,6 acid C8H6<u>O4</u>

Acenaphthene C12H10

Hexadecane C16H34

Eicosane C20H42

4,4'-Dimethoxybenzophenone C15H14<u>O3</u>

Chrysene C18H12

Octacosane C28H58

aaa-20R-Cholestane C27H48

Oxygenated Standards from Nova Scotia

(CH3OC6H4)2CO

C6H4(COOH)2

FID: 1ng = 130,197

FID: 1ng = 133,819

Both oxygenated standards have nearly identical response on the FID detector. Future Analysis: may be able to "approximately" quantify oxygenated Nova Scotia compounds.

Thus far, I have only used relative abundances.

Timeline of Individual Ion Areas

Temporarily refer to Chebogue Point, NS compounds by letter

Compound: B

Chebogue Point, Nova Scotia

Closer Look at Compound A

Compound: B

TAG Individual Compound vs. AMS Total Organics and Total SO4

Different Scales

Event Type 1 Event Type 2 No SO4 SO4

AMS Total Organic, Total SO4 data (Aerodyne Research, Inc.: Worsnop et al.)

Individual Compounds vs. Total Organics and Total SO4

Compound: A

Compound: B

Event Type 1 Event Type 2 No SO4 SO4 Event Type 1 Event Type 2
No SO4 SO4

AMS data supports the fact that these two compounds represent two different events.

AMS data (Aerodyne Research, Inc.: Worsnop et al.)

FACTOR ANALYSIS

Preliminary Data

- 28 resolved compounds (using MS single ion peak area)
- O3, CO, Radon
- AMS (Organic carbon, SO4,NO3,NH4)
- Black carbon, CPC data

See how these 37 elements vary with each other

 Factor analysis finds some underlying process or source type

<u>Factor 1 = Organic Only Factor</u>

- -Majority of TAG compounds (including Compound A)
- -AMS Organic aerosol
- -Radon

Factor 2 = Organic + SO4 Factor

- -A few TAG compounds (including Compound B)
- -AMS SO4, NH4, NO3, Organic aerosol
- -O3, CO, Elemental Carbon

<u>Factor 3 = Biogenic Oxidation Factor</u>

-Four TAG compounds

AMS data (Aerodyne Research, Inc.: Worsnop et al.) Radon data (U.Washington, Bothell: Dan Jaffe)

Total Organics are mostly split between Factors 1 and 2

Potential Reason for Fewer Factor 2 Compounds

Integrated total FID signal and used oxygenated standards to find approximate mass

- •Organics present during SO4 events may not elute through our GC column?
- •On average, only getting ~ 1/8 of all organics through column, I would expect more to make it through in an urban environment.

CONCLUSIONS

- TAG instrument successfully deployed
- First in-situ hourly measurements of speciated ambient organic aerosol composition
- Preliminary analysis of 28 compounds
 - See 3 distinct source types w/ different organic marker compounds
- There are many "non-eluting" compounds in a remote environment

In the near future:

- Quantify resolved compounds
- Add more parameters to factor analysis
- Analyze Unresolved Complex Mixture to bring out information on aerosol oxidation level
- Take TAG to an urban environment

ACKNOWLEDGEMENTS

AMS Data (ICARTT 2004):

Aerodyne Research, Inc. University of Manchester, UK University of Colorado, Boulder

Allan, Cross, DeCarlo, Northway, Canagaratna, Huffman, Jimenez, Coe, Worsnop

Radon Data (ICARTT 2004):
U. Washington, Bothell
Dan Jaffe

Funding:

Department of Energy – Global Change Education Program

Department of Energy – Small Business Innovative Research grant

National Oceanic and Atmospheric Administration

Factor Analysis

F1: U.S.

F2: Local combustion

F3: Alkanes

F4: OVOC

F5: Terpenes

F6: Biogenic OX

Organic Aerosol Chemical Composition

Multiple regression of OC species with 6 factors:

Tentative Compound ID:

1,6-dioxaspiro[4,4]nonane-2,7-dione ($C_7H_8O_4$)?

7-anti-methyl-2-oxo-bicyclo[2.2.1]heptane-7-carboxylic acid ($C_9H_{12}O_3$)?

2,3-pinanediol ($C_{10}H_{18}O_2$)?

